

Procomp project: thermoplastic composites technology Società: Proplast Speaker: Andrea Romeo - Head of Engineering Dept

Moldex3D

Procomp: Thermoplastic composite technology

PROCOMP

Moldex3D

Procomp: Thermoplastic composite technology

Process steps

Moldex3D

Laminate heating

By IR-lamp oven Glass fiber Twill 50/50 fabric PP matrix Thickness = 1 mm

Laminate transfer

Pick-up from oven Fast movement Extraction of previous part from mould Placing pre-heated laminate

PROCOMP

 $T_{laminate}$ after heating = 170-180°C

Process steps

Mould closing/laminate thermoforming One-step forming By mould clamping (cavity/core)

Thermoplastic injection overmoulding PP+30% gf (Borealis GD301FE black)

Mold features

Injection system Hot runner injection system Thermoplay FNH624076

Injection directly on part On longitudinal flow leader (supporting partners' LOGOS) 4 holes for flow transfer to inner side

Mold features

Moldex3D

Injection system Hot runner injection system Thermoplay FNH624076

Internal flow leader to distribute material to periphery and fill ribs

Mold features

Moldex3D

Material choices

Materials

Moldex3D

ORGANOSHEETS

 PP+GF 50/50 (Twill fabric) TEPEX[®] dynalite 104-RG600(2)/47%

Thickness = 1 mm

• PP+FV 80/20 (Almost unidirectional)

TEPEX® dynalite 104-RGUD600(2)/47%

BOREALIS

Thickness = 1 mm

OVEROULDING THERMOPLASTIC

• PP+30%FV

Xmod[™] GD301FE

Testing

Flexural testing 3 (points bending) Supports span: 150 mm Testing speed: 2 mm/min

Moldex3D

Displacement (mm)

Material	σ _{fM} kN	ε _{fM} mm
PP+30%gf (no laminate)	0.74	8.35
50/50 twill laminate + overmoulding	0.96	6.66
80/20 unidir laminate + overmoulding	0.92	6.06

Overmoulding simulations

Complete filling

proplast

PLASTICS INNOVATION POLE

proplast

PLASTICS INNOVATION POLE

TP composite overmoulding simulation

Moldex3D

Packing phase

proplast

PLASTICS INNOVATION POLE

TP composite overmoulding simulation

Temperature at end of cooling

proplast

PLASTICS INNOVATION POLE

proplast PLASTICS INNOVATION POLE

TP composite overmoulding simulation

Warpage

Key points

- 1. Reduced viscosity of molten thermoplastics
- 2. Microcellular structure of thermoplastic moulded parts

- 3. Nucleation and growth of cells depends on pressure during injection
- 4. Growth goes on until material freezes

- 5. Expansion capability of gas is affected by part thickness
- 6. Foaming level depends on flow length (see chart)

- 7. Foaming is controlled and repeatable
- 8. Mechanical properties are preserved up to expansion about 10%

Celanex[®] 2300 GV 1/30 (PBT with 30 % glass)

Source: Ticona GmbH

9. Mechanical properties variation depends on the plastic material itself

Filled

10. Mechanical properties variation depends on fillers/reinforcement

Unfilled

Expansion prediction

Cells size under $50 \mu m$

Cells density well distributed

Temperature at end of cooling

Moldex3D

Warpage

Strong reduction of warpage in all directions.By Mucell process:Symmetrical deformation.

Planarity largely recovered

TP composite overmoulding simulation

Mucell *virtual cycle*

proplast

PLASTICS INNOVATION POLE

	Mucell	Compact	
t _{inj} (s)	0.15	0.53	
T _{melt} (°C)	245	245	
T _{mould} (°C)	40	40	
Gas dosage (%)	1		
Switchover (%)	97	98	
t _{holding} (s)	1	9	
P _{holding} (bar)	700	900	
t _{cooling} (s)	33	28	Variation (%)
t _{cycle} (s)	39.1	42.5	-8
Shot weight (g)	24.9	27.2	-8.4
x-warpage (mm)	-0.216/+0.217	-0.286/+0.286	-24 / -24
y-warpage (mm)	-0.199/+0.109	-0.988/+1.887	-79 / -94
z-warpage (mm)	-0.123/+0.124	-0838/+0.837	-85 / -85

FEM simulations

Virtual run

Moldex3D

FEM simulation of thermoplastic **Moldex**3D composites

Procomp

proplast

PLASTICS INNOVATION POLE

Laminate modeling (exahedral mesh) Overmoulding modeling (tetrahedral mesh) Laminate: Twill 50/50 glass, PP matrix Overmoulding: PP+30%gf (Borealis GD 301FE)

Mirostructure description + Microstructure overall response Mirostructure description + Microstructure overall response Microstructure overall response Material model sensitive to microstructure FEM PROCOMP

PLASTICS INNOVATION POLE FEM simulation of thermoplastic **Moldex**3D composites

PLASTICS INNOVATION POLE FEM simulation of thermoplastic **Moldex**3D composites

Simulation vs experimental

proplast

PLASTICS INNOVATION POLE

FEM simulation of thermoplastic Moldex3D

composites

PLASTICS INNOVATION POLE FEM simulation of thermoplastic composites

Crack initiation

proplast

PLASTICS INNOVATION POLE FEM simulation of thermoplastic **Moldex**3D composites

Sum up

Thermoplastic composites

Favourable combination of reinforce by continuous fibers (fabric) characteristic of traditional thermoset composites and chance to integrate on parts features typical of injection moulding

- High stiffness
- High mechanical strength
- Excellent impact resistance
- Lightweight
- Chemical resistance
- Processability

Production process of high productivity

- Production cycle similar to injection moulded thermoplastics
- Unlike Thermosets, no long curing times are required
- NO need of autoclave neither specific process devices
- Completely automated process

Design freedom / integration of functions

- Chance to integrate functional details by overmoulding (ribs, bosses, pins, anchor points, snap-fits etc.)
- Unlike hi-filled thermoplastics, exhibit progressive damage and progressive failure
- No sudden failure

Simulations of thermoplastic composites

Simulation on injection overmoulding

- Compact/Mucell simulation
- Prediction of process and part quality
- Local prediction of overmoulded component's morphology (fiber orientation, cells size and density)
- Exploitation of flow simulation results into FEM structural simulations

Integration of process-dependent morphology into FEM structural simulations

- Material model sensitive to microstructure of both laminate and overmoulding
- Advanced structural simulations
- Highest correlation between virtual modeling and reality

Moldex3D

Thank you for your attention

Andrea Romeo

Consorzio Proplast Head of Engineering Dept

andrea.romeo@proplast.it +39 01311859743 www.proplast.it

proplast

PLASTICS INNOVATION POLE

Sezione

Moldex3D

Il problema

Moldex3D

La soluzione

I Vantaggi

Thank You

