Moulding Innovation Day 2025

Rubber - Synergy between the Shear Heating Parameter with the Filling & Curing CAE Simulations

Italian Gasket:

- <u>Speaker</u>: Ing. Mario Costardi (*Italian Gasket R&D Specialist*)
 Coworker: Mattia Ramini, PhD (*Italian Gasket Group R&D Director*)

Synergy between the Shear Heating Parameter with the Filling & Curing CAE Simulations

1. BACKGROUND INFORMATION / LITERATURE;

Literature References.

2. DESIGN OF EXPERIMENTS (DOE);

Moldex3D Simulation Study.

3. *Moldex3D* SIMULATION INVESTIGATION;

3 case studies with different rubber compound data, geometry & mold concept.

4. RESULTS & DISCUSSION;

CAE Simulations Runs Outputs.

5. FINAL REMARKS & IMPROVEMENT SUGGESTIONS.

Next steps.

About Us

Giving value to the Individual, in order to inspire Excellence and contribute to a better World.

ITALIAN GASKET GROUP

PROCESSED RUBBER MATERIALS

RUBBER PRODUCTS

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - BACKGROUNG INFORMATION

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - BACKGROUNG INFORMATION

- > The main topic of this presentation is to show the importance of the *Shear Heating Parameter* (η_{SH}) input data into MOLDEX3D[®] software to obtain outputs more "adherent to reality".
- > The 3 proposed case studies have the following characteristics:
 - different main applications (automotive & industrial);
 - different rubber compound & geometry (both in shape & volume);
 - different mold concept & design.

TEMPERATURE CONTROL IN RUBBER INJECTION MOLDING

TEMPERATURE CONTROL IN RUBBER INJECTION MOLDING

SHEAR HEATING PARAMETER FOR RUBBER INJECTION MOLDING

- *T*_{SH} is an indicator of the thermal history undergone by rubber till the injection point.
- It's a very fast on-line process control of injection molding of rubber.
- The use of T_{SH} as an input parameter does not significantly affect the simulation of the filling phase, probably due to the small sensitivity of the viscosity characteristics to temperature, compared to plastics.
- The use of T_{SH} impacts mostly the simulation of the curing phase, in particular the average curing conversion is higher and more homogeneous than the result obtained with T_{barrel} .

3. Agnelli, S., Ramini, M., Ramorino, G.: (July 2022) Injection molding process of rubber components: improving the process design with the shear heating parameter, 15th International Conference on Advance Computation Engineering, 3-7 J.

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

DESIGN OF EXPERIMENTS (DOE) - COLLECTING DATA FOR CAE SIMULATION

Property	Method
Density (Densimeter)	ASTM D297
Viscosity / Shear Rate	Internal / ASTM D4440
Heat Capacity (DSC / Differential Scanning Calorimeter)	ASTM E1269
Thermal Conductivity (TCi / Thermal Conductivity Analyzer)	ASTM D7984
Curing Kinetics (DSC / Differential Scanning Calorimeter)	Internal
Specific Volume With Curing (PVTC by Dilatometer)	PVTC Model: Tait-C Model
Hardness (Hardness tester)	DIN ISO 7619-1
Tensile Strength (Dynamometer)	DIN 53504
Elongation at break (Dynamometer)	DIN 53504
100% modulus (Dynamometer)	DIN 53504
Poisson's Ratio	N/A

- 1. <u>CAE</u> is used to <u>simulate the compound flow</u> <u>& curing behavior inside the mold;</u>
- 2. As <u>accurate</u> is the <u>rubber compound</u> <u>characterization</u> as <u>effectively</u> will be the simulation outcome;
- 3. Laboratory measurements, with process data from industrial injection molding test, enable for the most reliable results.

References:

2. Ramini, M., Agnelli, S.: Monitoring of shear heating effects during injection molding of rubber to improve the process control, Polym. Bull. (2022).

- 3. Agnelli, S., Ramini, M., Ramorino, G.: Injection molding process of rubber components: improving the process design with the shear heating parameter, 15th International Conference on Advance Computation Engineering, 3-7 J (July 2022).
- 4. Ramini, M., Agnelli, S.: (May 6, 2021) Process control in injection molding machine by using shear heating parameter of rubber compounds. All about rubber compounding, (virtual event), knowhow webinars forum by Technobiz.

RUBBER FRAME - MOLDEX3D ITALIA TECHNICAL SUPPORT => 3D MODELS + MESHES

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

F EXPERIMENTS DOE - IN	PUT: PROCESS PAR	AMETERS (RUBB	
Filling	Item Data	Unit	
Filling Time	15	S	
Melt Temperature	120	°C	Т_{SH}
Mold Temperature	175	°C	
Max Injection Pressure	250.00	MPa	
Injection Volume	10.7719	cm ³	
Curing			
Curing Time	120	S	
Max Curing Pressure	250	MPa	

The input data (*Filling Time*, *Melt Temperature*, *Mold Temperature* & *Curing Time*) were set-up based on IG know-how & by considering a similar injection moulding production.

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

<u>"CAP" VALVE</u> - MOLDEX3D ITALIA TECHNICAL SUPPORT => 3D MODELS + MESHES

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

DESIGN OF EXPERIMENTS (DOE) - INPUT: MATERIAL FIGURES

2.000	E	PDM EPDM-0	IO CAE	
1.800				
1.600				
1.400				
1.200				F
1.000				
0.800				-
0.600				
0.400				
0.200				

Material_	Mec. Properties
Туре	EPDM
Grade Name	EPDM-60
Producer	CAE
Mechanical Properties	Isotropic Pure Polymer
Elastic Modulus	2.2e+7 (dyne/cm ⁴)
Poisson's Ratio	0.38 (·)
CLTE	8.59e-5 (1/K)

Mat	erial_Contents
Туре	EPDM
Grade Name	EPDM-60
Producer	CAE
Melt Temperature (Minimum)	60 °C
Melt Temperature (Normal)	70 °C
Melt Temperature (Maximum)	80 °C
Mold Temperature (Minimum)	140 °C
Mold Temperature (Normal)	165 °C
Mold Temperature (Maximum)	170 %

CAE *MOLDEX3D* RUBBER COMPOUND:

Rubber_EPDM_EPDM Sulphur Green 60 Shore A.mtx

Material characterized under IG-R&D method.

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

OF EXPERIMENTS DOE -	INPUT: PROCESS PA	RAMETERS («CA	P» VALVE
Filling	Item Data	Unit	
Filling Time	6	s	
Melt Temperature	150	°C	Т_{SH}
Mold Temperature	190	°C	
Max Injection Pressure	250	MPa	
Injection Volume	23.3172	cm ³	
Curing			
Curing Time	90	S	
Max Curing Pressure	250	MPa	

The input data (*Filling Time*, *Melt Temperature*, *Mold Temperature* & *Curing Time*) were set-up based on IG-know how & by considering a similar injection moulding production.

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

<u>ROLLER</u> - MOLDEX3D ITALIA TECHNICAL SUPPORT => 3D MODELS + MESHES

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

3.000	EF	PDM EPDM-6	0 CAE	
2.000				
1.800				
1.600				
1.400				
1.200				F
1.000				
0.800				
0.600				
0.400				
0.000				

Material_	_Mec. Properties
Туре	EPDM
Grade Name	EPDM-60
Producer	CAE
Mechanical Properties	Isotropic Pure Polymer
Elastic Modulus	2.2e+7 (dyne/cm ⁴)
Poisson's Ratio	0.38 (;)
CLTE	8.59e-5 (1/K)

Ма	terial_Contents
Туре	EPDM
Grade Name	EPDM-60
Producer	CAE
Melt Temperature (Minimum)	60 °C
Melt Temperature (Normal)	70 °C
Melt Temperature (Maximum)	80 °C
Mold Temperature (Minimum)	140 °C
Mold Temperature (Normal)	155 °C
Mold Temperature (Maximum)	170 °C

CAE *MOLDEX3D* RUBBER COMPOUND:

Rubber_EPDM_EPDM Sulphur Black 60 Shore A.mtx

Material characterized under IG-R&D method.

SAME RUBBER COMPOUND OF THE PREVIOUS ARTICLE

Filling	Item Data	Unit
Filling Time	24	S
Melt Temperature	140	°C
Mold Temperature	185	°C
Max Injection Pressure	153	MPa
njection Volume	638.797	cm ³
Curing		
Curing Time	300	S
Max Curing Pressure	153	MPa

The input data (*Filling Time*, *Melt Temperature*, *Mold Temperature* & *Curing Time*) were set-up based on IG-know how & by considering a similar injection moulding production.

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - MOLDEX 3D

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER WITH THE FILLING & CURING CAE SIMULATIONS - FINAL REMARKS

FINAL REMARKS

SYNERGY BETWEEN THE SHEAR HEATING PARAMETER & MOLDEX3D®:

- •<u>The implementation of T_{SH} as an input data</u> allowed to properly setup the simulation & to obtain outputs more "adherent to reality";
- •<u>Design of Experiments (DoE) applied in 3D flow simulations</u> allowed to identify the correct mold design, by considering multiple aspect of the injection moulding process;
- •CAE simulation can effectively <u>support the identifying of a correct</u> <u>mold design;</u>
- •Moreover, by <u>using real injection moulding data for the set-up of</u> <u>the simulations</u>, it was possible to <u>detect defects present on</u> <u>technical articles</u> & take action to reduce/eliminate them.

AKNOWLEDGEMENTS & REFERENCES

ITALIAN GASKET RESEARCH & DEVELOPMENT STUDY

AUTHORS:

Italian Gasket R&D Dept: Ing. Mario Costardi & Mattia Ramini, PhD

REFERENCES:

- 1. Ramini, M., Agnelli, S.: Shear heating parameter of rubber compounds useful for process control in injection molding machine, Rubber Chemistry & Technology, 93, 729–737 (2020).
- 2. Ramini, M., Agnelli, S.: *Monitoring of shear heating effects during injection molding of rubber to improve the process control*, Polym. Bull. (2022).
- 3. Agnelli, S., Ramini, M., Ramorino, G.: *Injection molding process of rubber components: improving the process design with the shear heating parameter*, 15th International Conference on Advance Computation Engineering, 3-7 J (July 2022).
- 4. Ramini, M., Agnelli, S.: *Process control in injection molding machine by using shear heating parameter of rubber compounds*. All about rubber compounding, (virtual event), knowhow webinars forum by Technobiz (May 6, 2021).
- 5. M. Ramini, Injection molding process optimization of rubber compounds focused on the sustainability, University of Brescia, 2023.

Thank you