

Titolo: SIMULAZIONE DI MATERIALI NANOCOMPOSITI Effetto delle condizioni di processo sulle proprietà elettriche

Azienda: Proplast Relatore: Andrea Romeo Marta Palenzona

Logo aziendale: proplast

MID Molding Innovation Day 2018, Italy 14 June, 2018 Hotel dei Parchi del Garda, Lazise, Italy

proplast PLASTICS INNOVATION POLE

Moldex3D

Our Premises

proplast PLASTICS INNOVATION POLE

Moldex3D

To know more about partner companies see: <u>http://www.proplast.it/en-us/Members/Detail</u>

More than 200 members

Our activities in Product Innovation project

Some Proplast Solutions:

I NANOCOMPOSITI

GRAFENE: il materiale delle meraviglie Moldex3D

- > un foglio di spessore di un solo atomo
- > quasi trasparente
- > 200 volte più forte dell' acciaio
- > madre di tutte le nanostrutture grafitiche

>

- > Avvolgimento → FULLERENE
- > La struttura molecolare assume la forma di una sfera vuota e densa
- > Eccellente capacità di trasporto della carica
- > Impiego: celle fotovoltaiche polimeriche

Scoperta del fullerene Alexander Parkes Primo materiale plastico semisintetico 1861/1862 1985 2004

>

Moldex3D

Graphene

Graphene

I NANOTUBI DI CARBONIO

- > Strutture cilindriche dalla forma tubolare con diametro di pochi nanometri (0.7 nm ÷ 10 nm) e lunghi quanto il diametro di un capello, chiusi alle estremità.
- > Classificati in base al numero di fogli di grafene arrotolati

CNT a parete singola (SWCNT) CNT a doppia parete (DWCNT) CNT a parete multipla (MWCNT)

> Al microscopio appaiono come un groviglio di fibre

p1_inlense_6, 10.06.04, 4kV, 7mm, 50000x,

I NANOTUBI DI CARBONIO

- Le loro proprietà dipendono da: disposizione atomica diametro lunghezza
- > La curvatura circolare gli conferisce: resistenza meccanica conducibilità termica ed elettrica capacità di essere biologicamente e chimicamente attivi
- > Impieghi: meccanico, elettronico e biomedico; additivati alle materie plastiche permettono di ottenere materiali capaci di condurre calore ed elettricità.

INNOVATION POLE

I NANOTUBI DI CARBONIO – il progetto

- Studio sulla correlazione tra il comportamento elettrico e il comportamento morfologico anisotropico dei nanocompositi PP/MWCNTs stampati a iniezione condotto dalla collega Dott.ssa Marta Zaccone, sotto la supervisione del Dr. Alberto Frache.
- > Collaborazione con l' area di Ingegneria di Processo di Proplast, e con il supporto Moldex3D per la validazione virtuale dei risultati ottenuti.
- > Applicazione dello studio ad un manufatto plastico: una penna capacitiva per schermi touch screen

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE

Studio analitico delle proprietà elettriche e della morfologia

> PP + 3% CNTs = FORMULAZIONE ELETTRICAMENTE CONDUTTIVA

Matrice: PP Moplen RP 348 R prodotto da Lyondell Basell, Filler: multi-walled carbon nanotubes (MWCNTs), diametro 10 nm, lunghezza 1.5 µm, percentuale di carbonio del 90%.

> Stampaggio a iniezione di provini rettangolari per successiva caratterizzazione

Pressa a iniezione: Engel VC 500/120, con diametro della vite di 40 mm Dimensioni del provino: 100x140x2 mm

proplast PLASTICS INNOVATION POLE

PROPRIETÀ ELETTRICHE

PROPRIETÀ ELETTRICHE – DC

- > Resistività misurata secondo le tre direzioni
 - X longitudinale al flusso
 - Y trasversale al flusso
 - Z lungo lo spessore
- > Variazione della proprietà, anche di diversi ordini di grandezza, a seconda della direzione: $10^1 \Omega$ cm (lungo X e Y) e $10^6 \Omega$ cm (in Z).

PROPRIETÀ ELETTRICHE – DC

- > Resistenza elettrica misurata lungo una sezione trasversale
- > Si osservano una regione interna più conduttiva (cuore) e due aree esterne a conduttività minore (pelle).
- > La resistenza elettrica segue un andamento parabolico, in linea con l' effetto «fountain flow» ($10^5 \Omega$ al cuore e di $10^7 \Omega$ sulle pelli).

PLASTICS INNOVATION POLE

PROPRIETÀ ELETTRICHE – AC

> Comportamento studiato in direzione Z, misurato in 9 posizioni.

> Punto più vicino al gate (2) è il meno conduttivo mentre, alla massima distanza dall' iniezione (6) si ha conduttività più alta.

last

ASTIGS INNOVATION POLE

MORFOLOGIA – analisi ottica

- Caratterizzazione morfologica mediante microscopio elettronico a scansione (SEM).
- > Distribuzione non omogenea dei MWCNTs lungo lo spessore: al cuore → area ricca di nanotubi, con agglomerati ben impregnati dalla matrice polimerica sulle pelli → concentrazione di nanotubi minore
- > Diversa dispersione e distribuzione dei nanoriempitivi = diverso comportamento elettrico

Cuore

Pelli

MORFOLOGIA – analisi ottica

 > Diversa morfologia degli agglomerati:
 sulle pelli → MWCNTs dalla forma allungata e orientata rispetto al flusso

al cuore → MWCNTs organizzati in aggregati non orientati dalla forma sferica.

MORFOLOGIA – analisi ottica

PARAMETRI DI PROCESSO

> Studiata l' influenza di tre parametri di processo:

Temperatura del fuso

Temperatura dello stampo

Velocità di iniezione

Moldex3D **PARAMETRI DI PROCESSO – temperatura del** fuso

> Resistività superficiale (Rs) e la resistività al cuore, nelle direzioni Z e X (rispettivamente $\rho_z e \rho_x$)

MWCNT ^{content} [wt%]	Inject T mould [°C]	ion moulding (Injection rate [cm ³ /s]	Conditions T melt [°C]	Rs [Ω/₅q]	p ₂ [Ohm`cm]	₽ x [Ohmicm]
4	30	70	200	6.50E+06	3.30E+07	1.04E+03
	30	70	+20	6.50E+06	2.30E+06	1.01E+03

 Nessuna sostanziale alterazione; solo per quanto riguarda la resistività in direzione Z si ha una riduzione un po' più marcata, pari a un ordine di grandezza.

Moldex3D PARAMETRI DI PROCESSO – temperatura dello stampo

> Caratterizzazione elettrica in DC; indagate la variazione di resistività a livello superficiale (Rs) e a cuore ($\rho_z e \rho_x$)

p_{z} [Ohmicm]			$ ho_{x}$ [Ohmicm]			Rs [Ω/□]					
	MWCNT content [wt%]				MWCNT content [wt%]				MWCNT content [wt%]		
T mould [°C]	2	3	4	T mould [°C]	2	3	4	T mould [°C]	2	3	4
30	8.40 E+14	1.36 E+12	1.26 E+07	30	5.51 E+05	2.53 E+05	1.87 E+03	30	7.80 E+12	1.13 E+11	5.35 E+06
70	4.26 E+14	2.13 E+08	1.12 E+06	70	9.48 E+05	3.23 E+04	5.98 E+02	70	2.69 E+13	3.36 E+07	4.09 E+06
100	3.06 E+06	3.84 E+06	3.83 E+05	100	3.63 E+02	4.27 E+02	2.01 E+02	100	5.41 E+06	3.71 E+06	1.93 E+05

 Effetti più evidenti; le nanocariche si riorganizzano in strutture più elettroconduttive anche dopo aver raggiunto le pareti dello stampo

Moldex3D PARAMETRI DI PROCESSO – velocità di iniezione

> Caratterizzazione elettrica in AC e DC

ast

INNOVATION POLE

pro

- > Notevole decremento, pari a 4-5 ordini di grandezza, della resistività a cuore e superficiale, con passaggio da comportamento isolante a conduttivo.
- Più contenuta la variazione della permittività elettrica, influenzata dalla velocità di iniezione e dalla temperatura stampo.

DEDUZIONI

- Evidente dipendenza delle caratteristiche finali dalla morfologia e dalle condizioni di processo.
- In corrispondenza della superficie dello stampo, il materiale congela e i MWCNTs non hanno il tempo di organizzarsi in maniera efficiente . A cuore il materiale fuso resta fuso più a lungo e i MWCNTs originano configurazioni sferiche dalle qualità superiori.
- > La differenza morfologica messa in luce dall' analisi SEM conferma e legittima il comportamento elettrico anisotropo
- > Temperatura del fuso, temperatura stampo e velocità di iniezione influenzano la viscosità del polimero; si riscontra:

aumento della fluidità

sforzi di taglio più bassi

- migliore diffusione del polimero negli agglomerati minor orientazione dei MWCNTs
- > Risultato: temperatura più alta del fronte di flusso e minori sforzi di taglio garantiscono migliori proprietà elettriche del prodotto finale.

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE Validazione dei dati con Moldex3D

IL MATERIALE

- > Lo stampaggio dei provini ha permesso la caratterizzazione elettrica del manufatto stampato ad iniezione, e la caratterizzazione fisico meccanica del materiale.
- Essenziale la collaborazione con il supporto Moldex3D: definizione > del materiale, elaborando un file ad hoc per effettuare le simulazioni di testing del modello e di validazione con i dati sperimentali. +3%CNT CAE 10⁵

IL MODELLO

> Il manufatto, l' iniezione e lo stampo sono stati discretizzati in ottemperanza delle matematiche reali, utilizzando il «*boundary layer mesh mode*»

PARAMETRI DI PROCESSO

- > I parametri di processo sono stati impostasti seguendo fedelmente quanto indicato nelle schede di stampaggio del campione.
- > Due scenari, per confronto con i campioni reali

$$T_{stampo} = 30 \text{ °C}$$

$$t_{iniezione} = 0.94 \text{ s}$$

$$T_{stampo} = 70 \text{ °C}$$

$$t_{iniezione} = 0.75 \text{ s}$$

> Due ulteriori scenari, per meglio determinare l' influenza delle due variabili di processo

$$T_{stampo}$$
 = 30 °C
 $t_{iniezione}$ = 0.75 s

Moldex3

Prove in AC. La maggior conduttività del punto 6 rispetto al punto 2 corrisponde ad una temperatura del fronte di flusso più elevata nel punto con risposta elettrica migliore.

Filling_Melt Front Temperature

Filling_Melt Front Temperature

 T_{stampo} = 30 °C $t_{iniezione}$ = 0.75 s

 T_{stampo} = 70 °C $t_{iniezione}$ = 0.94 s

RISULTATI – Temperature (EOF)

3 6 Flow direction Filling Temperature Time = EOF [0C] 1 7 208.824 198.402 187.981 T_{stampo} = 30 °C $t_{iniezione}$ = 0.94 s 177.559 167.137 156.715 146.293 135.871 2 6 125.450 pelle pelle cuore cuore 115.028 $T_{stampo} = 30 \ ^{\circ}C$ 104.606 203.6 °C 71 °C 87 °C 208.3 °C $t_{iniezione} = 0.94 s$ 94.184 T_{stampo} = 70 °C $t_{iniezione}$ = 0.75 s 204 °C 101 °C 209.6 °C 113 °C 83.762 73.340 T_{stampo} = 30 °C $t_{iniezione}$ = 0.75 s 71 °C 204 °C 210 °C 86 °C 62.918 52.497 T_{stampo} = 70 °C $t_{iniezione}$ = 0.94 s 203.8 °C 101 °C 207.6 °C 113.5 °C

proplast PLASTICS INNOVATION POLE

Filling_Shear Stress Time = EOF [MPa] 7.500 7.000 6.500 6.000 5.500 $T_{stampo} = 70$ °C $t_{iniezione} = 0.75$ s Max. Shear stress=1.5 MPa $T_{stampo} = 30 \ ^{\circ}C$ 5.000 Max. Shear stress=7.8 MPa $t_{iniezione} = 0.94 s$ 4.500 4.000 3.500 3.000 2.500 2.000 1.500 1.000 0.500 $T_{stampo} = 70 \ ^{\circ}C$ $T_{stampo} = 30 \ ^{\circ}C$ Max. Shear stress=7.8 MPa Max. Shear stress=1.95 MPa $t_{injectione} = 0.75 s$ $t_{iniezione} = 0.94 s$ 0.000

Moldex3D

PLASTIGS INNOVATION POLE

 Gli shear stress sono responsabili della morfologia degli agglomerati. Temperature stampo elevate migliorano gli stress totali.

Moldex3D

> Differenza tra shear stress sulla pelle e a cuore

Moldex3D

> Differenza tra shear stress sulla pelle e a cuore

DEDUZIONI

- Secondo i precetti dello stampaggio a iniezione
 temperature elevate + alte velocità di iniezione = materiale più fluido
 T_stampo elevata e alta velocità di iniezione = pelle esterna sottile
- Fluidità elevata e pelle esterna: sottile s
- > Shear stress elevati sulle pelli e bassi al cuore con temperature più elevate a fine flusso igiustifica e avalla la teoria secondo la quale nelle pelli si formano agglomerati dalle proprietà elettriche inferiori rispetto a quelli formatisi a cuore.
- > I risultati virtuali si dimostrano congruenti con quelli sperimentali e forniscono nuove prospettive di interpretazione.

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE Caso di studio – Stylus Pen

IL MANUFATTO

- > Modello 3D di penna capacitiva per touch screen
- > Pensata per essere interamente stampata ad iniezione
- > Indagati:

PUNTO DI INIEZIONE OTTIMALE

PARAMETRI DI PROCESSO IDEALI

 > Obbiettivo: garantire la formazione di aggregati sferici nella zona della punta

IL MANUFATTO – punto di iniezione

- > Due differenti punti di iniezione
- > Medesimi parametri di processo tempo d' iniezione = 1.3 s Temperatura stampo = 40°C Temperatura fuso= 200 °C
- Temperature impostate seguendo i parametri di processo consigliati

 Le temperature più elevate si riscontrano a fine flusso

> Anche gli shear stress si dimostrano più bassi a fine flusso

IL MANUFATTO – punto d'iniezione

- > Risultati in linea con le prove analitiche
- > Migliore conduttività a fine flusso
- > Posizione ottimale del gate: in testa

Moldex3D **IL MANUFATTO – parametri di processo**

Studiati tre scenari per definire l' influenza dei parametri di processo

proplast PLASTICS INNOVATION POLE

Moldex3D **RISULTATI (1) – Melt Front Temperature**

VELOCITÀ D' INIEZIONE

 Maggiore velocità di iniezione, maggiore temperature a fine flusso

RISULTATI (1) – Shear Stress

RISULTATI (2) – Shear Stress

 > Evidenti miglioramenti a livello di stress apportati da una temperatura stampo più alta

Moldex3D **RISULTATI (3) – Melt Front Temperature**

TEMPERATURA FUSO

RISULTATI (3) – Shear Stress

proplast PLASTICS INNOVATION POLE

CONCLUSIONI

- > Lo studio analitico e la validazione dei dati sperimentali hanno permesso di definire i parametri che influenzano le caratteristiche elettriche dei manufatti stampati ad iniezione con nanocompositi
- > Dalle deduzioni precedenti è stata determinata la disposizione ottimale del gate e i migliori parametri di processo al fine di ottenere una penna per touch screen con concentrazione di agglomerati sferici nella zona della punta
- > Dal caso di studio applicato alla Stylus Pen emerge una marcata influenza della temperatura del fuso sia sulle temperature del fronte di flusso sia sugli shear stress.

INNOVATION POLE

CONCLUSIONI

- > La temperatura stampo si dimostra influente solo dal punto di vista degli shear stress a livello del corpo della penna. In tutti e tre gli scenari considerati la punta presenta shear stress sufficientemente contenuti.
- > Il caso di studio della Stylus Pen ha permesso di applicare virtualmente i principi alla base della conducibilità dei materiali nanocompositi considerati e ha dimostrato una notevole sensibilità del metodo di calcolo sia all' andamento del flusso che ai parametri di iniezione

Thank You

Andrea Romeo

Consorzio Proplast Head of Engineering Dept

andrea.romeo@proplast.it +39 01311859743 www.proplast.it

www.moldex3d.com Copyright © 2018 Moldex3D. All rights reserved.