Moldex3D

Titolo: SIMULAZIONE DI MATERIALI NANOCOMPOSITI

Effetto delle condizioni di processo sulle proprietà elettriche

Azienda: Proplast

Relatore: Andrea Romeo

Marta Palenzona

Logo aziendale:

proplast

MID Molding Innovation Day 2018, Italy
14 June, 2018
Hotel dei Parchi del Garda, Lazise, Italy

PLASTICS INNOVATION POLE

Moldex3D

Our Premises

To know more about partner companies see: http://www.proplast.it/en-us/Members/Detail

More than 200 members

PLASTICS INNOVATION POLE

Moldex3D

PLASTICS INNOVATION POLE

Some Proplast Solutions:

I NANOCOMPOSITI

- > un foglio di spessore di un solo atomo
- > quasi trasparente
- > 200 volte più forte dell' acciaio
- > madre di tutte le nanostrutture grafitiche

Graphene Avvolgimento → FULLERENE Fullerene Studiosi della Rice University Scoperta del fullerene **Alexander Parkes** Andre Geim e Konstantin Novoselov Primo materiale plastico Sintesi del grafene semisintetico 1861/1862 1985 2004

- > Avvolgimento → FULLERENE
- > La struttura molecolare assume la forma di una sfera vuota e densa
- > Eccellente capacità di trasporto della carica
- > Impiego: celle fotovoltaiche polimeriche

> Arrotolamento → NANOTUBI DI CARBONIO

I NANOTUBI DI CARBONIO

- > Strutture cilindriche dalla forma tubolare con diametro di pochi nanometri (0.7 nm ÷ 10 nm) e lunghi quanto il diametro di un capello, chiusi alle estremità.
- > Classificati in base al numero di fogli di grafene arrotolati

CNT a parete singola (SWCNT)

CNT a doppia parete (DWCNT)

CNT a parete multipla (MWCNT)

I NANOTUBI DI CARBONIO

- Le loro proprietà dipendono da: disposizione atomica diametro lunghezza
- > La curvatura circolare gli conferisce:
 resistenza meccanica
 conducibilità termica ed elettrica
 capacità di essere
 biologicamente e chimicamente
 attivi
- > Impieghi: meccanico, elettronico e biomedico; additivati alle materie plastiche permettono di ottenere materiali capaci di condurre calore ed elettricità.

I NANOTUBI DI CARBONIO – il progetto

> Studio sulla correlazione tra il comportamento elettrico e il comportamento morfologico anisotropico dei nanocompositi PP/MWCNTs stampati a iniezione condotto dalla collega Dott.ssa Marta Zaccone, sotto la supervisione del Dr. Alberto Frache.

> Collaborazione con l'area di Ingegneria di Processo di Proplast, e con il supporto Moldex3D per la validazione virtuale dei risultati ottenuti.

> Applicazione dello studio ad un manufatto plastico: una penna

capacitiva per schermi touch screen

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE

Studio analitico delle proprietà elettriche e della morfologia

Moldex3D

> PP + 3% CNTs = FORMULAZIONE ELETTRICAMENTE CONDUTTIVA

Matrice: PP Moplen RP 348 R prodotto da Lyondell Basell, Filler: multi-walled carbon nanotubes (MWCNTs), diametro 10 nm, lunghezza 1.5 µm, percentuale di carbonio del 90%.

Moldex3D

 Stampaggio a iniezione di provini rettangolari per successiva caratterizzazione

Pressa a iniezione: Engel VC 500/120, con diametro della vite di 40 mm Dimensioni del provino: 100x140x2 mm

PROPRIETÀ ELETTRICHE

PROPRIETÀ ELETTRICHE - DC

- > Resistività misurata secondo le tre direzioni
 - X longitudinale al flusso
 - Y trasversale al flusso
 - Z lungo lo spessore
- > Variazione della proprietà, anche di diversi ordini di grandezza, a seconda della direzione: $10^1 \, \Omega$ cm (lungo X e Y) e $10^6 \, \Omega$ cm (in Z).

PROPRIETÀ ELETTRICHE – DC

- Resistenza elettrica misurata lungo una sezione trasversale
- > Si osservano una regione interna più conduttiva (cuore) e due aree esterne a conduttività minore (pelle).
- > La resistenza elettrica segue un andamento parabolico, in linea con l'effetto «fountain flow» (10⁵ Ω al cuore e di 10⁷ Ω sulle pelli).

PROPRIETÀ ELETTRICHE - AC

> Comportamento studiato in direzione Z, misurato in 9 posizioni.

> Punto più vicino al gate (2) è il meno conduttivo mentre, alla massima distanza dall' iniezione (6) si ha conduttività più alta.

MORFOLOGIA – analisi ottica

- > Caratterizzazione morfologica mediante microscopio elettronico a scansione (SEM).
- > Distribuzione non omogenea dei MWCNTs lungo lo spessore: al cuore → area ricca di nanotubi, con agglomerati ben impregnati dalla matrice polimerica sulle pelli → concentrazione di nanotubi minore
- > Diversa dispersione e distribuzione dei nanoriempitivi = diverso comportamento elettrico

(%) 3wt%

Pelli Cuore

MORFOLOGIA – analisi ottica

- > Diversa morfologia degli agglomerati:
 sulle pelli → MWCNTs dalla forma allungata e orientata rispetto al flusso
 - al cuore → MWCNTs organizzati in aggregati non orientati dalla forma sferica.

Cuore

MORFOLOGIA - analisi ottica

PARAMETRI DI PROCESSO

> Studiata l' influenza di tre parametri di processo:

Temperatura del fuso

Temperatura dello stampo

Velocità di iniezione

Moldex3D

PARAMETRI DI PROCESSO – temperatura del fuso

> Resistività superficiale (Rs) e la resistività al cuore, nelle direzioni Z e X (rispettivamente ρ_7 e ρ_8)

MWCNT	I _{nject}	ion moulding (Rs	p ₂ [○h m·c m]	ρ_{x}	
[wt%]	mould [°C]	rate [cm ³ /s]	T melt [°C]	[Q /sq]	[() h m·c m]	[On m·c m]	
4	30	70	200	6.50E+06	3.30E+07	1.04E+03	
4	30	70	+20	6.50E+06	2.30E+06	1.01E+03	

> Nessuna sostanziale alterazione; solo per quanto riguarda la resistività in direzione Z si ha una riduzione un po' più marcata, pari a un ordine di grandezza.

Moldex3D

PARAMETRI DI PROCESSO – temperatura dello stampo

> Caratterizzazione elettrica in DC; indagate la variazione di resistività a livello superficiale (Rs) e a cuore (ρ_7 e ρ_8)

ρ _z [Ohm:cm]				$ ho_{\star}$ [Ohmicm]			Rs [Ω/□]				
	MWCNT content [wt%]				MWCNT content [wt%]				MWCNT content [wt%]		
T mould [°C]	2	3	4	T mould [°C]	2	3	4	T mould [°C]	2	3	4
30	8.40 E+14	1.36 E+12	1.26 E+07	30	5.51 E+05	2.53 E+05	1.87 E+03	30	7.80 E+12	1.13 E+11	5.35 E+06
70	4.26 E+14	2.13 E+08	1.12 E+06	70	9.48 E+05	3.23 E+04	5.98 E+02	70	2.69 E+13	3.36 E+07	4.09 E+06
100	3.06 E+06	3.84 E+06	3.83 E+05	100	3.63 E+02	4.27 E+02	2.01 E+02	100	5.41 E+06	3.71 E+06	1.93 E+05

> Effetti più evidenti; le nanocariche si riorganizzano in strutture più elettroconduttive anche dopo aver raggiunto le pareti dello stampo

PARAMETRI DI PROCESSO – velocità di iniezione

> Caratterizzazione elettrica in AC e DC

- Notevole decremento, pari a 4-5 ordini di grandezza, della resistività a cuore e superficiale, con passaggio da comportamento isolante a conduttivo.
- Più contenuta la variazione della permittività elettrica, influenzata dalla velocità di iniezione e dalla temperatura stampo.

DEDUZIONI

- > Evidente dipendenza delle caratteristiche finali dalla morfologia e dalle condizioni di processo.
- > In corrispondenza della superficie dello stampo, il materiale congela e i MWCNTs non hanno il tempo di organizzarsi in maniera efficiente. A cuore il materiale fuso resta fuso più a lungo e i MWCNTs originano configurazioni sferiche dalle qualità superiori.
- > La differenza morfologica messa in luce dall' analisi SEM conferma e legittima il comportamento elettrico anisotropo
- > Temperatura del fuso, temperatura stampo e velocità di iniezione influenzano la viscosità del polimero; si riscontra:

aumento della fluidità
sforzi di taglio più bassi
migliore diffusione del polimero negli agglomerati
minor orientazione dei MWCNTs

> Risultato: temperatura più alta del fronte di flusso e minori sforzi di taglio garantiscono migliori proprietà elettriche del prodotto finale.

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE

Validazione dei dati con Moldex3D

Frequency [rad/s]

IL MATERIALE

> Lo stampaggio dei provini ha permesso la caratterizzazione elettrica del manufatto stampato ad iniezione, e la caratterizzazione fisico meccanica del materiale.

> Essenziale la collaborazione con il supporto Moldex3D: definizione del materiale, elaborando un file ad hoc per effettuare le simulazioni di testing del modello e di validazione con i dati sperimentali.

T [oC] **—** 180 -205 Viscosity [g/(cm.sec)] Polymer 10 -230 Grade Name PP+3%CNT Producer CAE 10³ Comment Last modified date 2018/02/07 Process condition Process condition Melt temperature (minimum) Polymer | Grade Name | Producer | PP | PP+3%CNT | CAE 200 10¹ Melt temperature (normal) 10 10⁵ Mechanical Properties Fiber-filled polymer - Experim. Melt temperature (maximum) 230 oC 0.38 (-) PP PP+3%CNT CAE Temperature = 140 oC Poisson's ratio v12 20 oC Shear Rate [1/sec] Mold temperature (minimum) Poisson's ratio v23 0.38 (-) 40 oC Mold temperature (normal) Modulus E1 (fiber direction) 1.303e+010 (dvne/cm^2) 60 oC — G' Mold temperature (maximum) 10⁷ 100 oC Modulus E2 (transverse direction) 1.253e+010 (dyne/cm^2) — G" Ejection temperature Modulus [dyne/cm^2] 120 oC Freeze temperature Shear Modulus G 8.7e+009 (dyne/cm^2) 2e-005 (1/K) CLTE a1 (fiber direction) 10⁵ 7e-005 (1/K) CLTE a2 (transverse direction) Fiber Length/Diameter (L/D) 158 (-) Interaction coefficient 0.01 (-) Fiber weight percentage 3 (%)

IL MODELLO

> Il manufatto, l' iniezione e lo stampo sono stati discretizzati in ottemperanza delle matematiche reali, utilizzando il «boundary layer mesh mode»

PARAMETRI DI PROCESSO

- I parametri di processo sono stati impostasti seguendo fedelmente quanto indicato nelle schede di stampaggio del campione.
- > Due scenari, per confronto con i campioni reali

$$T_{\text{stampo}} = 30 \, ^{\circ}\text{C}$$

 $t_{\text{iniezione}} = 0.94 \, \text{s}$

$$T_{\text{stampo}} = 70 \, ^{\circ}\text{C}$$

 $t_{\text{iniezione}} = 0.75 \, \text{s}$

> Due ulteriori scenari, per meglio determinare l'influenza delle due variabili di processo

$$T_{\text{stampo}} = 30 \, ^{\circ}\text{C}$$

 $t_{\text{iniezione}} = 0.75 \, \text{s}$

$$T_{\text{stampo}} = 70 \, ^{\circ}\text{C}$$

 $t_{\text{iniezione}} = 0.94 \, \text{s}$

RISULTATI – Melt Front Temperature

Prove in AC. La maggior conduttività del punto 6 rispetto al punto 2 corrisponde ad una temperatura del fronte di flusso più elevata nel punto con risposta elettrica migliore.

RISULTATI – Melt Front Temperature

RISULTATI – **Melt Front Temperature**

RISULTATI – Temperature (EOF)

 Gli shear stress sono responsabili della morfologia degli agglomerati. Temperature stampo elevate migliorano gli stress totali.

> Differenza tra shear stress sulla pelle e a cuore

> Differenza tra shear stress sulla pelle e a cuore

DEDUZIONI

Secondo i precetti dello stampaggio a iniezione
 temperature elevate + alte velocità di iniezione = materiale più fluido
 T_stampo elevata e alta velocità di iniezione = pelle esterna sottile

- > Shear stress elevati sulle pelli e bassi al cuore con temperature più elevate a fine flus so i giu stifica e avalla la teoria secondo la quale nelle pelli si formano agglomerati dalle proprietà elettriche inferiori rispetto a quelli formatisi a cuore.
- > I risultati virtuali si dimostrano congruenti con quelli sperimentali e forniscono nuove prospettive di interpretazione.

PP/MWCNT: COMPONENTI STAMPATI A INIEZIONE

Caso di studio – Stylus Pen

IL MANUFATTO

Moldex3D

- > Modello 3D di penna capacitiva per touch screen
- Pensata per essere interamente stampata ad iniezione
- > Indagati:

PUNTO DI INIEZIONE OTTIMALE

PARAMETRI DI PROCESSO IDEALI

> Obbiettivo: garantire la formazione di aggregati sferici nella zona della punta

IL MANUFATTO – punto di iniezione

- Due differenti punti di iniezione
- > Medesimi parametri di processo tempo d' iniezione = 1.3 s Temperatura stampo = 40°C Temperatura fuso= 200 °C
- > Temperature impostate seguendo i parametri di processo consigliati

RISULTATI – Melt Front Temperature

 Anche gli shear stress si dimostrano più bassi a fine flusso

IL MANUFATTO – punto d'iniezione

- > Risultati in linea con le prove analitiche
- > Migliore conduttività a fine flusso
- > Posizione ottimale del gate: in testa

IL MANUFATTO – parametri di processo

Studiati tre scenari per definire l'influenza dei parametri di processo

1 VELOCITÀ D' INIEZIONE

2 TEMPERATURA STAMPO

3 TEMPERATURA FUSO

$$t_{\text{iniezione}} = 1.3 \text{ s}$$
 $T_{\text{stampo}} = 40 \text{ °C}$
 $T_{\text{fuso}} = 200 \text{ °C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$
 $T_{\text{stampo}} = 40 \text{ °C}$
 $T_{\text{fuso}} = 200 \text{ °C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$

 $T_{\text{stampo}} = 20 \text{ °C}$
 $T_{\text{fuso}} = 200 \text{ °C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$

 $T_{\text{stampo}} = 40 ^{\circ}\text{C}$
 $T_{\text{fuso}} = 200 ^{\circ}\text{C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$

 $T_{\text{stampo}} = 60 \text{ °C}$
 $T_{\text{fuso}} = 200 \text{ °C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$

 $T_{\text{stampo}} = 60 \text{ °C}$
 $T_{\text{fuso}} = 200 \text{ °C}$

$$t_{\text{iniezione}} = 0.9 \text{ s}$$

 $T_{\text{stampo}} = 60 \text{ °C}$
 $T_{\text{fuso}} = 230 \text{ °C}$

VELOCITÀ D' INIEZIONE

> Maggiore velocità di iniezione, maggiore temperature a fine flusso

 $t_{iniezione} = 0.9 \text{ s}$ $T_{stampo} = 40 \text{ °C}$ $T_{fuso} = 200 \text{ °C}$

RISULTATI (1) – Shear Stress

RISULTATI (2) – Melt Front Temperature

RISULTATI (2) – Shear Stress

> Evidenti miglioramenti a livello di stress apportati da una temperatura stampo più alta

RISULTATI (3) – Melt Front Temperature

TEMPERATURA FUSO

RISULTATI (3) – Shear Stress

CONCLUSIONI

- > Lo studio analitico e la validazione dei dati sperimentali hanno permesso di definire i parametri che influenzano le caratteristiche elettriche dei manufatti stampati ad iniezione con nanocompositi
- > Dalle deduzioni precedenti è stata determinata la disposizione ottimale del gate e i migliori parametri di processo al fine di ottenere una penna per touch screen con concentrazione di agglomerati sferici nella zona della punta
- > Dal caso di studio applicato alla Stylus Pen emerge una marcata influenza della temperatura del fuso sia sulle temperature del fronte di flusso sia sugli shear stress.

CONCLUSIONI

- > La temperatura stampo si dimostra influente solo dal punto di vista degli shear stress a livello del corpo della penna. In tutti e tre gli scenari considerati la punta presenta shear stress sufficientemente contenuti.
- > Il caso di studio della Stylus Pen ha permesso di applicare virtualmente i principi alla base della conducibilità dei materiali nanocompositi considerati e ha dimostrato una notevole sensibilità del metodo di calcolo sia all' andamento del flusso che ai parametri di iniezione

Thank You

Andrea Romeo

Consorzio Proplast

Head of Engineering Dept

andrea.romeo@proplast.it +39 01311859743 www.proplast.it

Moldex3D

www.moldex3d.com Copyright © 2018 Moldex3D. All rights reserved.