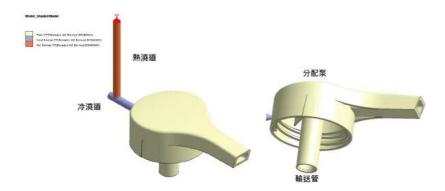

Plazology

Utilizzo di Moldex3D DOE (Design-Of-Experiment)

per ottimizzare lo stampaggio di un dispenser

Plazology (ndr.: www.plazology.co.uk) è una società di ingegneria inglese con anni di esperienza nel settore dello stampaggio materie plastiche, particolarmente indirizzata ai prodotti consumer e utilizza Moldex3D per le proprie attività di sviluppo prodotto, analisi e simulazione.



Questa esperienza, semplice a prima vista, serve ad introdurre un percorso di ottimizzazione sia di prodotto sia di processo (parametri di stampaggio) nella realizzazione di un dispenser per il settore consumer packaging.

Si è quindi utilizzato il modulo avanzato Moldex3D DOE (Design-Of-Experiment), un sistema esperto che una volta stabilito l'obiettivo, permette, tramite iterazioni automatiche di convergere verso quel risultato ottimale che ci si è prefissati.

Moldex3D DOE è un sistema esperto che aiuta gli utenti a valutare le condizioni di processo ottimali, come il tempo di impaccamento, il tempo di raffreddamento, la temperatura dello stampo, una tolleranza limite ecc.. Moldex3D Expert crea automaticamente variazioni di analisi e fornisce automaticamente riepiloghi grafici.

Il caso

Il dispenser è una pompa di erogazione manuale per una bottiglia contenente disinfettante.

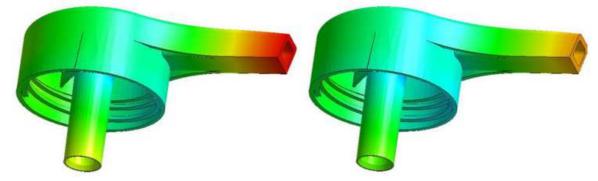
In questo caso, l'area principale di preoccupazione per questo modello è la curvatura e la concentricità del tubo, in quanto influisce la vestibilità e la funzionalità della pompa.



Poiché la parte, pur sembrando semplice da stampare, ha molto tolleranza stretta, sapendo che la condizione di processo ottimale è necessario per mantenere la deformazione al minimo e concentricità il più circolare possibile rispettosa delle tolleranze di progetto.

Quindi estetica della parte e funzionalità meccaniche devono essere raggiunte con il migliore compromesso

Soluzione


Utilizzare il modulo Moldex3D DOE per determinare il miglior settaggio possibile dei parametri di processo per migliorare concentricità, ridurre al minimo l'ovalizzazione e garantire i valori ottimali di deformazione e ritiro lineare

Risultati XY da Moldex3D DOE per il contenimento della deformazione e del ritiro

Benefici

Dai risultati della simulazione DOE, si è ottenuto che le componenti deformazione, ritiro lineare e concentricità del tubo è stata significativamente migliorata, rientrando nelle tolleranze di progetto

La deformazione totale è migliorata del 20-30% mantenendo un basso ritiro lineare (0,6-0,7%)

Con l'aiuto di Moldex3D DOE, i progettisti si sono potuti concentrare sul migliore sviluppo del prodotto in termini qualitativi, delegando la fase di convergenza all'obiettivo al sistema esperto.