

Experimental validation of tool deflection control by using Flexflow technology

Nicola Pavan – CAE Manager

MTC 2018 – Paris 26th Sept. 2018

nicola.pavan@inglass.it

Table of content

Company Introduction

FlexFlow Technology

Experiment description

Simulation comparison

Mismatch analisys

Conclusion

expertise

- Around 14.000 Systems delivered in 2017
- **42.000** Drops produced in 2017
- More than 2000 Customers
- More than 1100 End users
- More than 140 Designers in 10 countries

HRSflow: a Worldwide reliable partner

- 15 Plastic engineers in the world
- 5 Teams on different jet lags
- More than 1800 Simulation projects concluded in 2017
- Expert Certification
- Moldex Certified

Certification of Outstanding Partner

Presented to Mr. Nicola Pavan

for his excellent technical input and most valuable feedback of an experienced user of the

Advanced Hot Runner Simulation

October 27, 2017

DESK* FL**OW*** INSIGHT

CERTIFIED EXPERT

HRSflow advanced Development support

Our production plants

FLEXflow numbers

FLEXflow | Main items

Tip optimized for fine pressure regulation

10/8/2018

FLEXflow - Controller user interface: Page "Settings"

- > Opening and closing settings Max 8 steps can be setted
- > Sequence parameters based on **time** or **screw position** or **pressure value** in the cavity
- > Possiblity to handle up to 2 different injection units on the same IMM.

Benefit

Experiment Description

Equipment Description

Part Name:	Spoiler
Molding Material:	PP/EPDM 20% Talc
System series:	G series
Drops n ^o	5 drops VG
System type:	FLEXflow
Pressure sensors:	yes (4)
Force sensors:	yes (3)

Thickness:3 mmSize:1260 x 280 mmNominal weight:1060 g

Pressure sensor

Displacement sensor

Test description

	Run	Packing pressure	Packing time	Settings
	1	Low	Short	All open
	2	Medium	Short	All open
	3	High	Short	All open 📿
	4	High	Long	All open
	5	Medium	Short	Intermediate Closing step
	6	Medium	Long	Intermediate Closing step
⇒	7	High	Long	Intermediate Closing step
	8	Low	Long	Flexflow
	9	Medium	Long	Flexflow
	10	High	Long	Flexflow

Trial Results

Trial Results

Trial Results

Simulation comparision

Part model:	BLM 5 layers
Part elements:	980 k
Runner model:	BLM 10 layers
Movable pin:	Yes
Runner elements:	1130 k
Simulation type:	Process + core shift FS1

Cavity and core sides modelled as insert

Model introduction

Core

Fixed nodes at plate interface Fixed XY translation on columns

Cavity

Fixed nodes at plate interface Fixed XY translation on columns

Structural validation

Symmetric mold Fixed constraint on IMM Compression only support on pressure plates Cylindrical support on pillars Bonded contact between all bodies Pressure distribution mapped from simulation

Structural validation

Structural validation

Deflection FlexFlow T7

10/8/2018

HOTRI

Deflection FlexFlow T9

Deflection FlexFlow T9

Mismatch analysis

Filling mismatch

Compressibility on barrel

Passionfor expertise 34

Compressibility on barrel

Pressure mismatch

- FlexFlow regulation had a significant impact on tool deflection
- $\circ~$ Tool reaction is very fast to pin movement

Simulation

Technology

- $\circ~$ Matching of absolute deflection value
- Peak always recorded at maximum clamping force
- $\circ~$ Good pressure distribution matching in first part of packing phase

Next Steps

- > Investigate more realistic boundary conditions
- > Better investigate the pressure evolution into the cavity after V/P (new VE module?)
- > Evaluate different mold deflection simulation options

➢ Include cooling simulation

