

Electro Optical Systems: LWC and conformal cooling application

Augustin Niavas – Business development manager tooling

2013 Molding Innovation Day - POINT Dalmine Bergamo

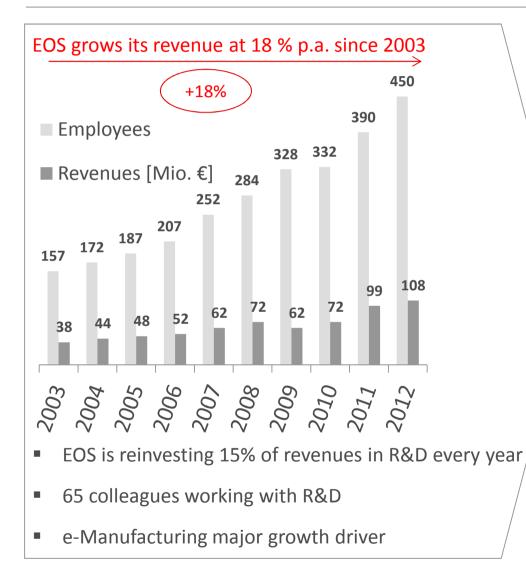
Dalmine, July, 5th 2013

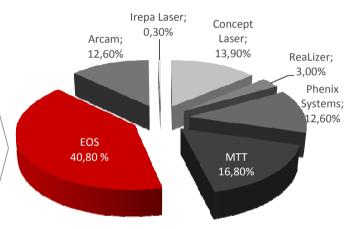
This presentation may contain confidential and/or privileged information. Any unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden.

Agenda

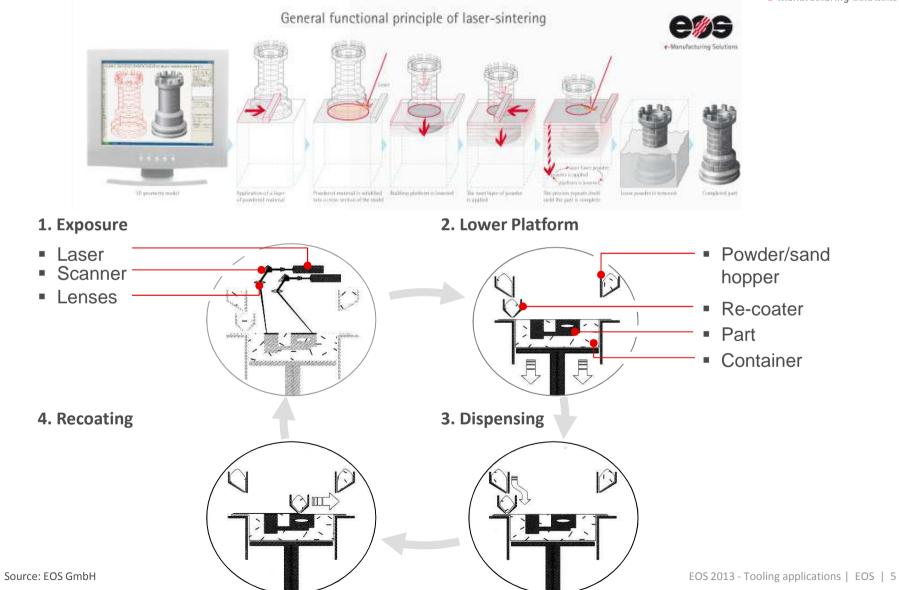
Overview

- About EOS and additive manufacturing
- LWC principles and examples
- Conformal cooling applications: principles & argumentation lines
- Inside additive manufacturing technology for tooling
- Examples of conformal cooling applications
- Conclusions


EOS Today: Global Footprint And Significant Worldwide Installed Machine Base


EOS worldwide installed base	EOS global footprint
America Rest o	<list-item><list-item><list-item><list-item><list-item><list-item> Revenue FY 2011/12: 110 Mio EUR Worldwide staff of ~450 (~ 320 in Germany) Customers in more than 50 countries EoS sales/application/service offices in 11 countries, distribution partners in 22 countries Strong patent portfolio: More than 700 active patents in nearly 100 patent families </list-item></list-item></list-item></list-item></list-item></list-item>

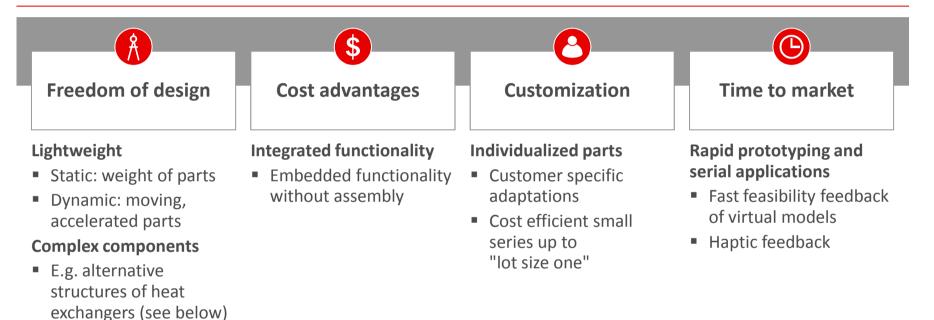
Technology and business driven to market leadership


EOS has more than 40 % of the metal sold systems

Market shares through the end of 2010 (660 metalbased machine installations). Source: Terry Wholers report

EOSINT Working Principle of Laser-Sintering

EOS tooling video shows benefit for injection moulding (to be found on EOS@Youtube)



EOS_Company-Presentation.pptx | EOS | 6

Additive Manufacturing (AM) Offers Various Advantages

AM technology key differentiators compared to conventional manufacturing processes

Heat exchanger

Laser adjustment unit

Finger implants

Washing rotor

EOS prioritizes Special Industries

Partnering with lead customers, listening and understanding specific industry requirements, translating customer needs in to adequate offerings

Additive Manufacturing (AM) enables two roads to success

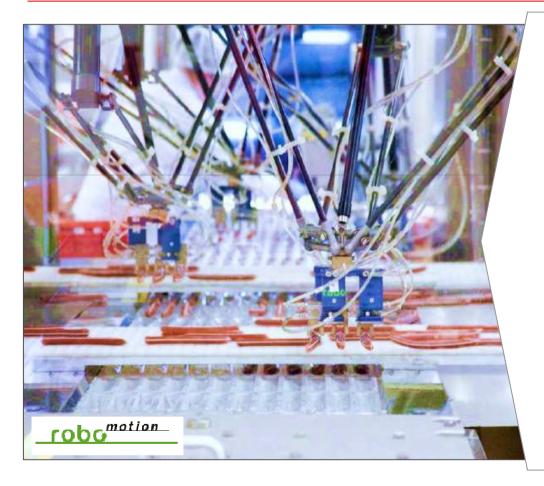
Scenario 1: Resolving constraints of conventional manufacturing

- AM can resolve constraints of conventional design of an existing solution by e.g.
 - Reducing part complexity
 - Reducing costs normally caused by e.g. tooling needed after manufacturing

Washing rotor: from 32 components to 2 lasersintered parts + 1 steel ring, no tooling necessary, functional integration, product customization, production on demand

Scenario 2: Enabling a completely new design approach

- AM can enable design that in conventional manufacturing environments has not been possible before
- Leading to completely new solutions, e.g
 - Move from metal to plastic
 - Making a part lightweight, yet functional


New design: integrated conformal cooling channels, lightweight design, reduced cycle times, increased part quality, weight reduction = not possible with conventional design

Additive Manufacturing offers two roads to success!

For gripper applications, the laser sintering technology is a perfect fit

Example Unilever / Robomotion

Handling and Robotics

Gripper requirements

- Automated processes widely spread in production environment
- Productivity requirements result in high speed / high acceleration
- Highly fragmented pick geometries

Advantages

- Lightweight design
- Economic individualization up to 'lot size one'
- Integrated functions (e.g. air channels)

A conventional handling device was redesigned leveraging the possibilities of laser sintering

Conventional design

Laser sintered design

- Hole gripper to pick up pieces out of an injection molding machine
- Four grippers mounted on a base plate
- Gripping mechanism operated by distributed compressed air
- Base plate being attached to a three axis robot

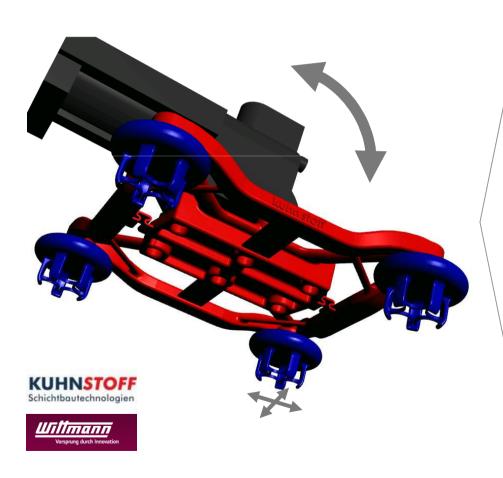
For the gripper, weight has been reduced by 80% whilst keeping handling properties

Example Kuhn-Stoff: new gripper design

Lightweight gripper

Application

- Hole gripper for part handling
- Weight of gripper: **19**g
- Handles up to 12kg parts
- Integrated pneumatic membrane to apply gripping force


Advantages

- About 80% weight reduction compared to conventional gripper
- Printed in one shot no final assembly
- Geometry fully flexible and scalable
- Tested to >5 mio. cycles

In a second step, the entire handling device has been redesigned generating significant value

Example Wittmann / Kuhn-Stoff: Redesigned handling device

Application details

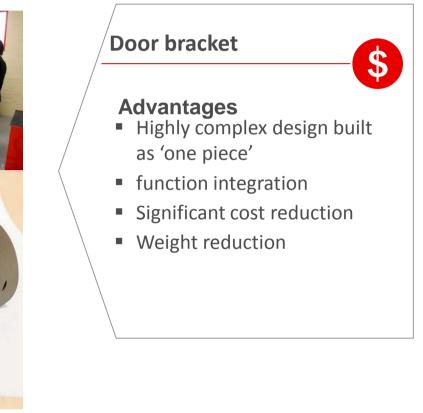
- Handling device to remove injection molding parts out of the tool during operation
- Three parts application:
 - Four laser sintered lightweight hole grippers
 - Base plate for stability and integrated air distribution
 - Axis module for 90° turning operations (embedded mechanics)
- Fully integrated application based on standard PA 2200 plastic material

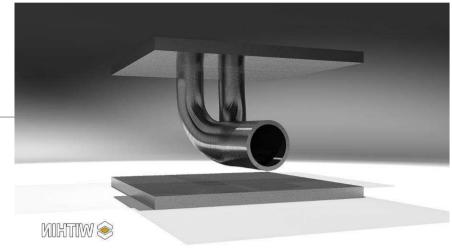
The application perfectly answers today's Handling & Robotics challenges

-86% -81% -50% 1.500 21 **Production** Weight Price time 210 [in %] [in gr.] [in days] Conventional Laser Conventional Conventional Laser Laser Sintered Sintered Sintered Flexibility Time-to-market Cost per part Laser sintered gripper to be Base plate generates **CAPEX** reduction produced "overnight" lightweight stiffness and at -50% gripper cost reduction the same time allows Reduction of manufacturing -86% less weight leading to integrated air channels time by 17 days smaller robot size Three components vs. 21, Fast reaction possible for **OPEX** reduction leading to less list positions **spare parts** or product design and logistics effort Lightweight and smaller build changes height (-60mm) resulting in shorter cycle times of injection molding machine

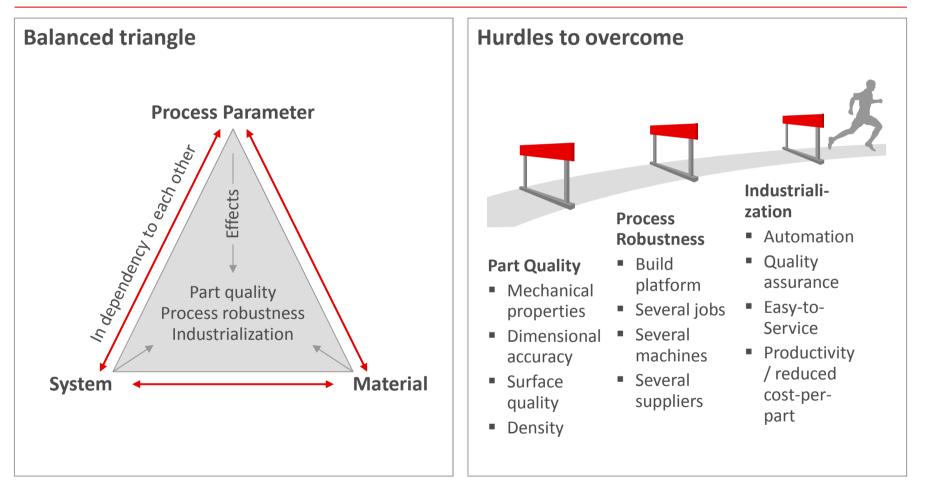
Example Wittmann / Kuhn-Stoff: Advantages compared to conventional solution

Source: Wittmann, Kuhn-Stoff, EOS


EOSINT M enables product optimization for aerospace devices with new design concepts


Overview possible application in the aeronautic industry

Door bracket for A380 – DML and Conventional EOS Ti64 produced on EOSINT M 270Xt at EADS IW.


Inside additive manufacturing technology for tooling

EOS is focusing on Part Quality, Process Robustness and Industrialization

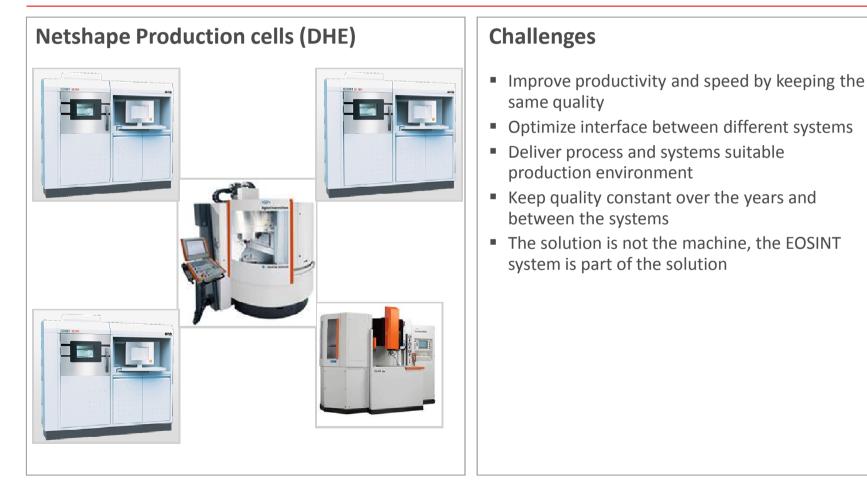
EOS Technology Focus

EOSINT M 280

Features

- 250x250x325 mm build envelope
- 200 or 400W laser
- Laminar flow process gas management
- Tidier process chamber
- Dual mode: reactive and non reactive materials can be processed
- Material: MS1, PH1, MP1, Ti64, IN625, IN718, AlSi10Mg, 316L(*), Corrax (*)
- Optionally with Comfort Powder Module

_aminar flow
Blowing nozzle
O Build area
Removable suction nozzle


EOSINT M280 400W

DMLS will be integrated in production cells to optimize process workload for customers

EOS view for tooling in the near future

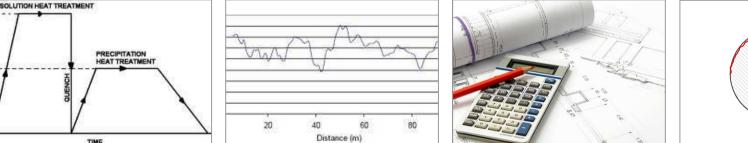
DMLS systems don't present most of the disadvantages of hybrid machines

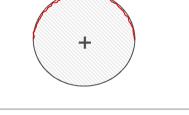
al roughness

Consequences of heat threatment

Internal roughness of CCC is positive

- After the heat threatment, the insert/part is subject to deformation
- As a consequnce the parts need to be finished a second time again
- All advantages are lost
- Internal rugosity of cooling channels have an « auto-cleaning » effect avoiding deposit of cediment on the internal surface of the cooling channel
- Rugosity improve heat exchange
- We need turbolent flow


High cost per parts, bad economics


- During the LS/SLM module works, the miling machine is in stand-by (costs)
- The total cost of the parts arenrelated to the 2 systems
- The calcuation of the cost per part shows that 2 different machines in parallell are better

Not all structure can be internally finished

- The milling machines can only finished half of the cooling channels (« Roof effect »)
- Smooth surfaces for CCC are not usefull for heat/cooling applications
- Support still needed and to be removed afterwards

Last but not least, produced chips have bad influence on micro-structures

Existing material fits to the process and fulfill tooling requirements, more still to come

EOS MaragingSteel MS1 - high performance steel for series tooling and other applications

Characteristics, applications, status

- Key characteristics
 - 18 Maraging 300 type steel (1.2709, X3NiCoMoTi18-9-5)
 - fully melted to full density for high strength
 - easily machinable as-built
 - age hardenable up to approx. 54 HRC
 - good thermal conductivity and polishability

MS1 – 1.2709

- Mechanical properties as built
 - UTS: 1100 MPa
 - yield strength:1000 MPa
 - hardness: 33 37 HRC
- Mechanical properties after age hardening (6 hours at 490°C)
 - UTS: > 1950 MPa
 - yield strength: > 1900 MPa
 - hardness: 50 54 HRC
 - Physical properties
 - relative density as built: approx. 100 %

Other alloys-steel

- Tool steel with improved anti-corrosion properties
- Alloy with improved heat conductivity *

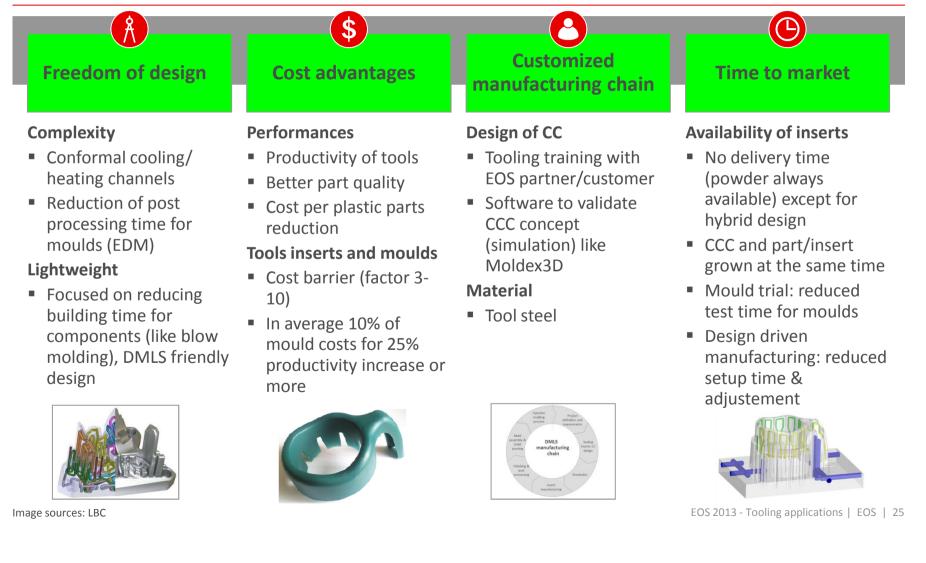
EOS 2013 - Tooling applications | EOS | 22

EOS Maraging steel is a very performing tool steel compared to standard ones

	Orvar supreme (1.2344)	Stavax (1.2083)	1.2343 (H13)	1.2709 (MS1)
Yield strength (Rp 0.2 %) [Mpa]	1250	1290	1400	1930
Tensile strength []	1400	1780	1600	2050
Elongation at break [%]	13	na	3-5	4-6
Modulus of elasticity [GPa]	210	210	215	200
Hardness [HRC]	52-54	48-52	52-54	52-54
Density [Kg/dm3]	7,8	7,74	7,8	8,0
Coefficient of thermal expansion [m/mK]	12,6x10 ⁻⁶	11x10 ⁻⁶	11,3x10 ⁻⁶	10,3x10 ⁻⁶
Thermal conductivity [W/m °C]	25	20	25	20
Corrosion resistance	yes	yes	no	yes

Source: Böhler, EOS

EOS 2013 - Tooling applications | EOS | 23


Conformal cooling applications: principles & argumentation lines

Additive Manufacturing (AM) offers various advantages in tooling

AM technology key differentiators compared to conventional manufacturing processes in tooling

Additive Manufacturing (AM) applications for tooling

Smarter design of conformal cooling channels: cost savings, cycle time reduction, increased performance, scrap rate reduction

Injection molding

Tool insert for injection moulding

- For duroplasts, thermoplasts, elastomere
- DMLS enables built-in, conformal cooling channels that can be optimized to draw off heat more rapidly and evenly
- Result: dramatic cycle time reduction, increased part quality

Special application areas

Tool insert

- Ideally suited for the reparation of e.g. tooling inserts, blow molding
- DMLS enables partial instead of a complete replacement of a partially damaged insert
- DMLS saves costs and reduces lead time for repair process)

Die casting

Tool insert for die casting

- Aluminum, zinc
- DMLS enables cooling system and cooling channels optimization, consequently reducing cycle time reduction and enabling serial production

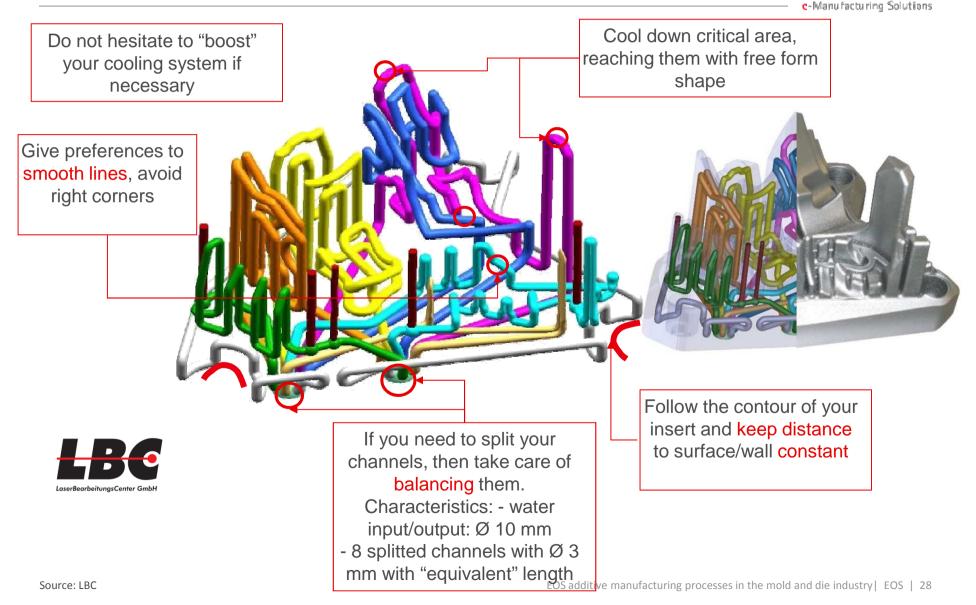
Rapid Tooling

Tool insert

- 0 series, prototypes
- DMLS can reduce lead times compared to conventionally manufactured inserts
- DMLS also enables costs reduction for tool production due to faster working time, increased mould, better thermal management of mould

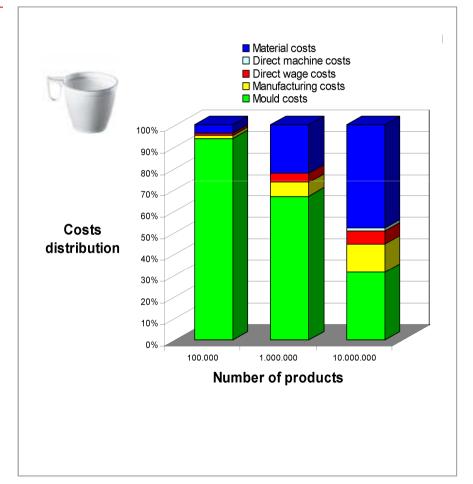
DMLS advantages for the tooling industry

What is today the impact of conformal cooling in injection moulding?


- Design driven manufacturing or freedom of design
- Optimized cooling/heating channels: hot spots and critical areas of the insert
- Productivity and quality improvement
- Complexity is not a cost-driver: high number of possible designs are possible
- Reduction of cost per plastic product
- Validation of benefits and results through simulation
- Uniformity of cooling positive for improvement of the insert life time

Leave under defined circumstance the area of conventional tooling and choose a new way for solving challenges

Design freedom is quite unlimited

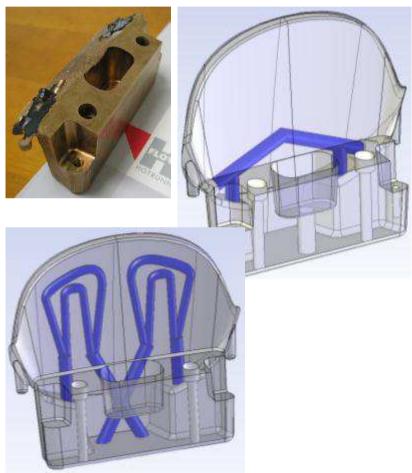

Positive impact on injection moulding process

DMLS has a positive impact on the injection moulding manufacturing chain

- The example concerns a thin-walled throw-away product (cheap raw material)
- DMLS has a selective effect on the costs along the manufacturing chain
- Advantages for inserts costs, productivity, cycle time, product quality and material usage
- Effects are additionally positive

Production cost distribution for product PS coffee cup

Advantages for tooling inserts

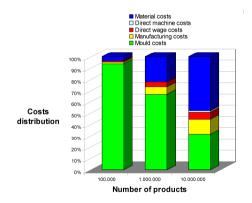


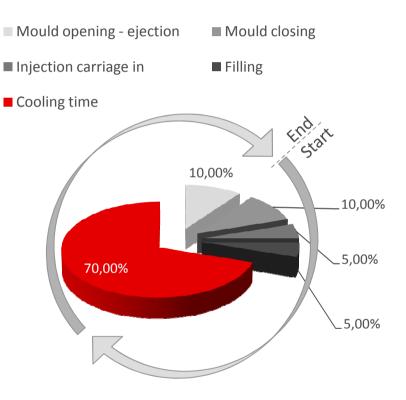
DMLS for tools costs and quality

- Complexity is not a cost-driver, lower price/insert thanks optimised use of the construction platform
- Reduction of Lead times (Cooling system and inserts are built at the same time)
- Hybrid approach save costs
- Conventional existing solutions are not an alternative
- Description: insert manufactured by DMLS and age hardened at 48-50 HRc to replace a CuBe insert broke during moulding process after 150.000 shots.
- Objective: keep or improve cooling efficiency by means of an insert structurally more resistant than the Cu-Be one.
- Results: 350.000 parts have been moulded, no break failure has occurred, cooling improved in the upside area of the tool insert.

Source: Inglass

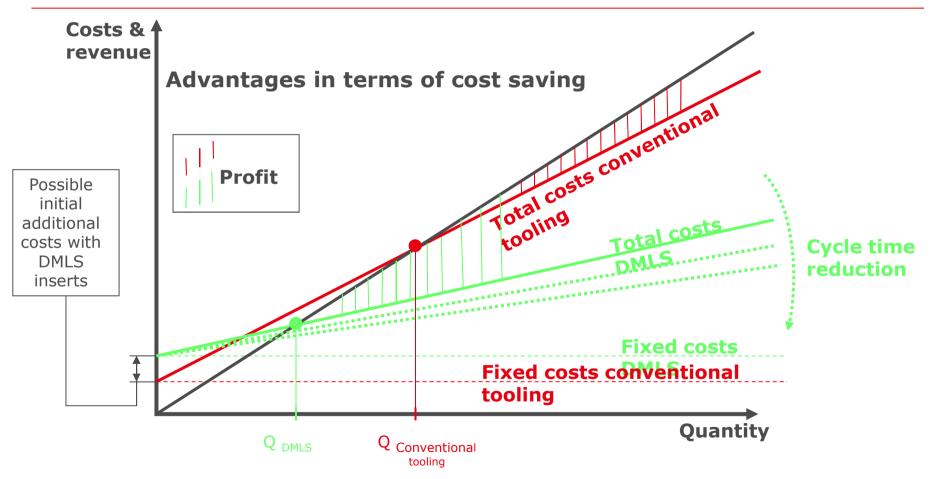
Change in design and material: from conventional design on Cu-Be to conformal cooling with MS1 Maraging Steel




Influence on the injection molding process

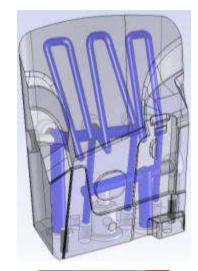
Advantages in terms of productivity

- Tempering system effectively allows up to 60% cycle time reduction
- Better control of the process
- Optimised workload and machine costs saving
- Better quality of the product


Cycle time diagram

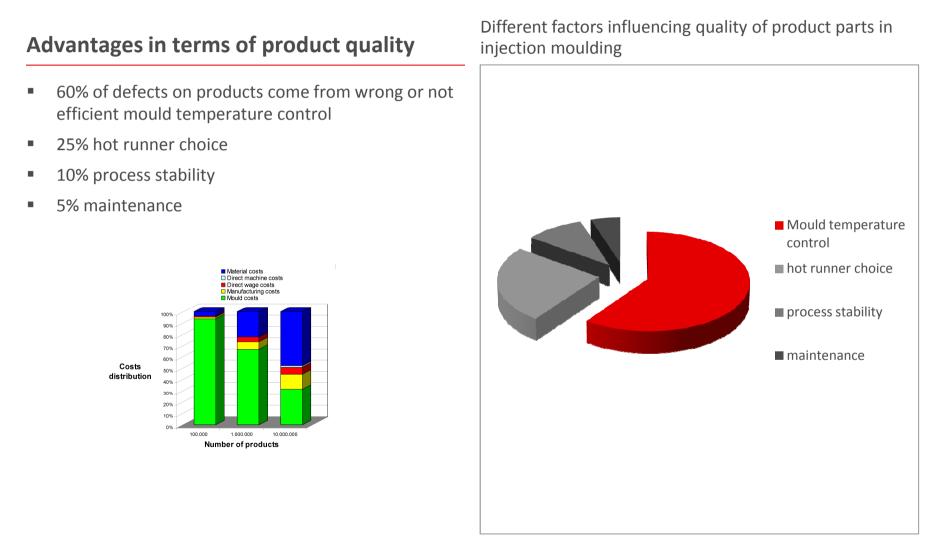
Advantages in terms of cost saving

Breakeven analysis illustrates economical benefits of DMLS in comparison to conventional tooling


Fast payback and important cost saving possible with DMLS

- Challenge
 - Reduce cycle time
 - Remove aesthetical problems due to bad cooling of the upper part of the insert

Benefits


- Elimination of defects on the aesthetical side of the part
- Cycle time reduced from 66 down to 60 seconds

Waste due to scraps on production of 250.000 parts						
	% scra	Noldin	g process cost / piece[€]	Material cost / piece[€]	Waste for scraps [€]	DMLS
DMLS	0.5%	, D	3,000	7,000	0.055	€ -114,000.00
Tradit.	2.0%	, D	3,300	7,000	0.206	
	Cost of	f molding p	rocess for the p	oduction of 250.0	00 parts	Marine Contraction of the Contra
	t _{CYCLE} [s]	Pieces / cycle	Machine and dire labor cost per ho [€/h]		Machine and direct labor cost[€/pz]	Examples of cooling lines on hybrid insert
DMLS	60	1	180,00	2200	3,000	A transporent
Tradit.	66	1	180,00	2200	3,300	EOS additive manufacturing processes in the mold and die industry EC

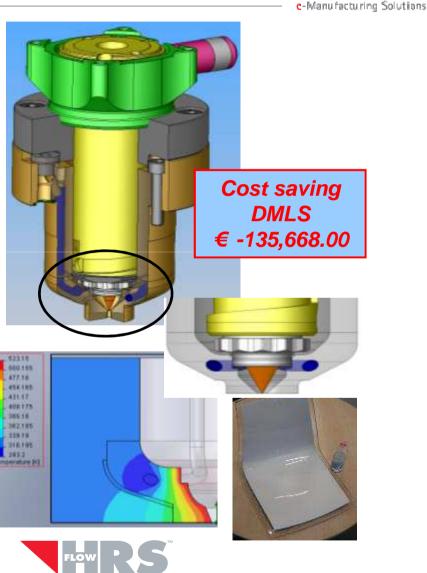
Heating/cooling has the most important influence on product quality

Case Study

Hot runner nozzle with DMLS cooling bushing (Source: Inglass)

Description

 SLM bushing with conformal channels for injection gate conditioning. This device is used for molding of a PC transparent chair, weight 2.700gr, injected by single nozzle.


Objective

 eliminate burning defects on the injection point due to shear heating effect on the gate.

Results

- no burning defects on the injection gate,
- comparing to a similar part, cycle time was reduced from 128 down to 110 s.

Cost of molding process for the production of 150.000 parts								
	t _{CYCLE} [S]	Pieces / cycle	Machine and direct labor cos per hour [€/h]	st machine		Machine and direct labor cost[€/pz]		
DMLS	110	1	1 114,00		0	3,483		
Tradit.	128	1	114,00	1000		4,053		
Money waste due to scraps on production of 150.000 parts								
	% scrap		ng process cost / piece[€]	Material cost / piece[€]		Waste for scraps [€]		
DMLS	0.5%	, 0	3,483	7,0		0. 052		
Tradit.	Tradit. 3.5% 4,053		4,053	7,0		0.387		

Examples of conformal cooling applications

DMLS addresses major plastic applications

Conformal cooling in strategic markets

Packaging

- Life time of inserts
- Uniformity of performance

Electrical/household Appliances

- Life time of inserts
- Innovation in designCycle time

Customer care and healthcare

- Cycle time
- Cost per part

Medical & pharmacy tooling

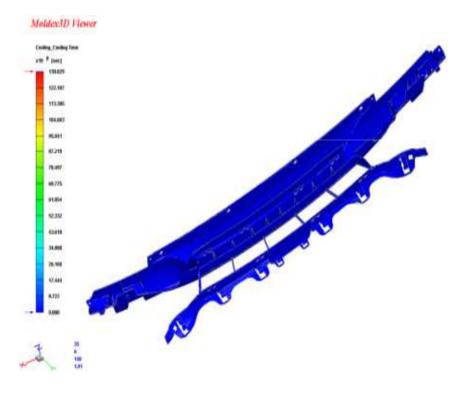
- Quality
- Productivity
- Complexity

Automotive

- Quality
- Productivity
- Cycle time
- Delivery time (TTM)

Toy industry

- Better quality
- Complex geometry

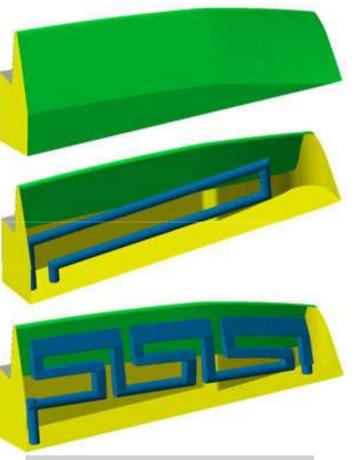

Optimized solution with hybrid design

DMLS tools and hybrid design improve quality and cycle time

Challenge

- Compare classic tool insert with hybrid technique and conformal cooling
- Look at end part quality
 - surface defects
 - Warpage
 - Scrap rate
 - Partial temperatures
- Evaluate result of end parts
- Improve part properties at critical areas

Optimized solution with hybrid design

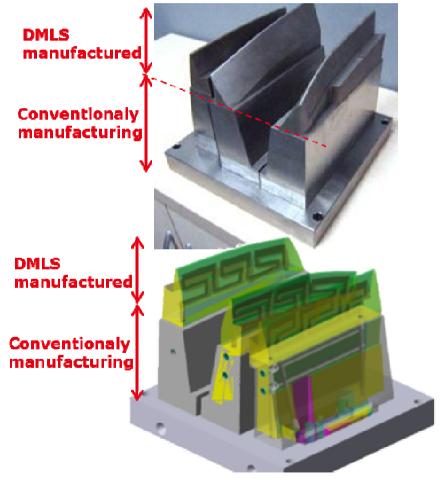

DMLS tools and hybrid design improve quality and cycle time

Solution

- Optimized conformal cooling channels regarding the cooling requirements
- Hybrid structure
 - lower part CNC milled
 - Upper part built on EOS M 270
- Material: EOS Maraging Steel MS1
- Building time:
 - CNC milling: 5 h
 - Direct metal laser sintering: 25 h
 - Post processing: 5 h

up: external surface; middle: conventional cooling; down: conformal cooling

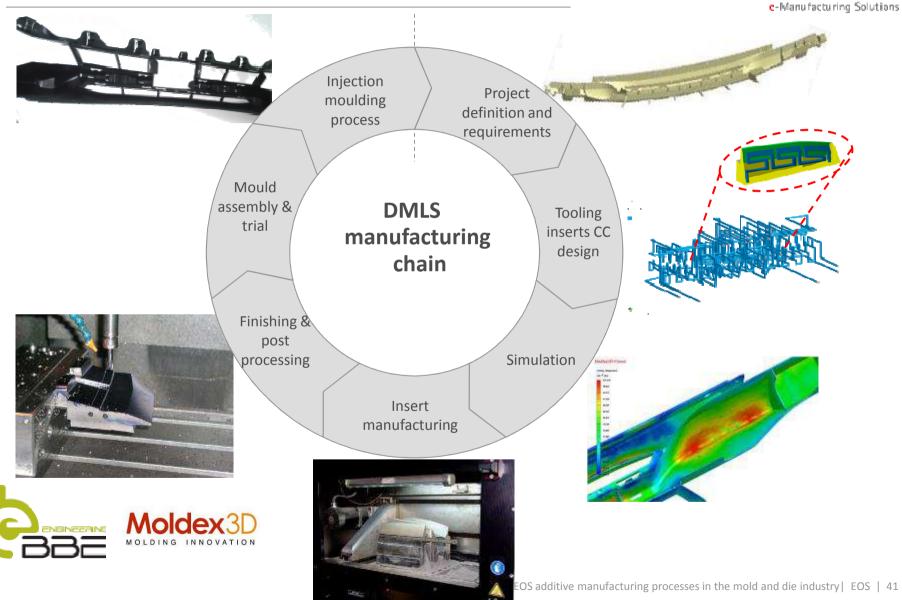
Optimized solution with hybrid design



DMLS tools and hybrid design improve quality and cycle time

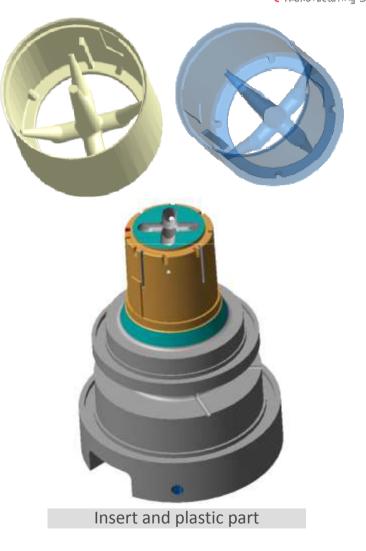
Benefits:

- less warpage and better mechanical properties
- Higher surface quality
- Cooling time down from 56 to 35 s → 37 % faster
- Cooling temperature reduce from 102°C to 82°C
- Temperature gradient lowered from 80°C to 30 °C
- Production rate increased from 1 part per minute to 2 parts per minute



DMLS manufacturing chain

Better injection moulding process with DMLS

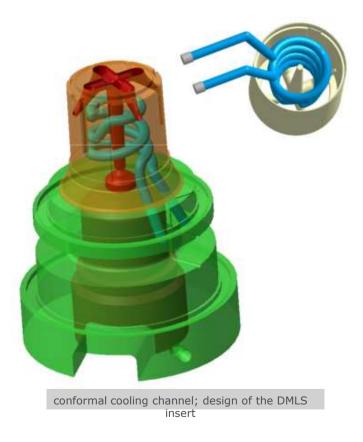

DMLS addresses quality and cost per part challenges

Challenge

- Cost reduction for the manufacturing of an automotive plastic product (San, Luran 368 R Crystal Clear, BASF)
- 4 cavities mould, standard solution with cupper alloy inserts
- Optimize cold Runner and nozzle gate process
- Improve quality of the manufactured part

Source: BBE Engineering; Prodintec

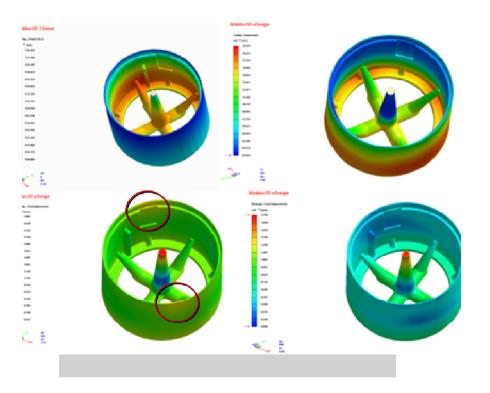
Better injection moulding process with DMLS


DMLS tools and hybrid design improve part quality and cycle time

Solution

- Design of conformal cooling channels
- Hybrid structure
 - Manufacture the lower part of the mold by conventional process (CNC milling)
 - Upper part built on EOS M 270
- Material: EOS MaragingSteel MS1
- Validation of results with flow, fill and cooling simulation using Moldex3D => decision for final design

Better injection moulding process with DMLS


c-Manufacturing Solutions

Simulation compares benefits of conformal cooling channels with conventional solution

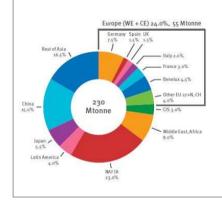
Solution

- The simulation is performed for the 2 possible solution with Mouldex3D
- Temperature distribution
 - The solution with the cupper alloy shows a maximum temperature of 107°C
 - The solution with the cupper alloy shows a maximum temperature of 79°C
- Warpage analysis
 - The conventional solution shows of max 0,25mm
 - The DMLS solution shows a warpage of 0,1

Upper picture : temperature distribution analysis.

Bottom picture: warpage analysis

Conclusions



DMLS will succeed in tooling only if successfully integrated in the expanding european market

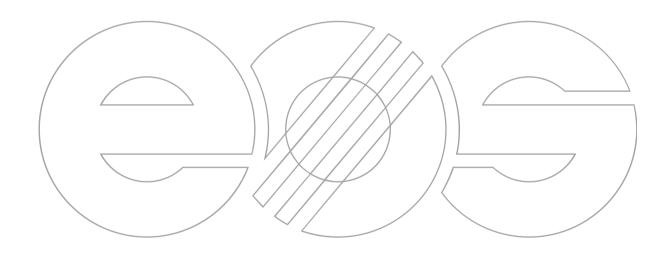
- Europe zone represents 24% of the worldwide production of plastics resins
- Software solutions offer from Moldex3D means for DMLS:
 - Proof of results
 - Optimization leverages and strategy
 - Guarantee of success
- DMLS can deliver answers to the upcoming challenges of the plastic industry: better quality, lower cost pet parts, sustainable production
- DMLS is an opportunity for innovative companies to differentiate themselves in a global context
- EOS will in the future works together with chosen partners of the manufacturing chain in order:
 - to deliver best results for common customers all over the manufacturing chain
 - Push the boundaries of the technology

Reduced carbon footprint

Is the future here?

Caps & closure has the most important business potential

EOS is a solution provider with a consistent service offer


EOS: Service Offerings

Thank you for your attention!

www.eos.info

This presentation may contain confidential and/or privileged information. Any unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden.